
Data Types,
Vector, Matrices
and Operators

1

➢Gain a foundational understanding of Business Analytics

➢Install R, R-studio, and workspace setup, and learn about

the various R packages

➢Master R programming and understand how various
statements are executed in R

Course Objectives

2

➢Gain an in-depth understanding of data structure used in

R and learn to import export data in R

➢Define, understand and use the various apply functions

and DPLYR functions

➢Shiny Apps and Dashboard

➢Text Mining and Open NLP Introduction

3

R Data Types

01 Vectors

02 Lists

03 Matrices

04 DataFrame

05 Factors

4

One of the key features of R is that it can handle complex statistical

operations in an easy and optimised way.

R handles complex computations using:

❑ Vector – A basic data structure of R containing the same type of data

❑ Matrices – A matrix is a rectangular array of numbers or other

mathematical objects. We can do operations such as addition and

multiplication on Matrix in R.

5

❑ Lists – Lists store collections of objects when vectors are of same

type and length in a matrix.

❑ Data Frames – Generated by combining together multiple
vectors such that each vector becomes a separate column.

6

Vectors in R

In R programming, the very basic data types are the R-objects called

vectors which hold elements of different classes.

c is function which means to combine the elements into a vector.

Create a vector
apple <- c('red','green',"yellow")
print(apple)

Get the class of the vector.
print(class(apple))

7

Vectors in R

❑ These data types in R can be logical, integer, double, character
complex or raw

❑ In R using the function, typeof() one can check the data type of
vector

❑ One more significant property of R vector is its length. The function
length() determines the number of elements in the vector

>c(2, 3, 5) [1] 2 3 5

[1] 2 3 5

>length(c("aa", "bb", "cc", "dd", "ee"))

[1] 5

8

Vectors in R

9

Vectors in R

10

Vectors in R

11

List in R

A list is an R-object which can contain many different types of

elements inside it like vectors, functions and even another list inside

it.

Create a list.

list1 <- list(c(2,5,3),21.3,sin)

Print the list.

print(list1)

12

Create a list.

list1 <- list(c(2,5,3),21.3,sin)

Print the list.

print(list1)

When we execute the above code, it produces the following result −

[[1]]
[1] 2 5 3

[[2]]
[1] 21.3

[[3]]
function (x).Primitive("sin")

13

Matrices in R

A matrix is a two-dimensional rectangular data set. It can be created

using a vector input to the matrix function.

Create a matrix
M = matrix(c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE)
print(M)

When we execute the above code, it produces the following result −

[,1] [,2] [,3]
[1,] "a“ "a“ "b“
[2,] "c“ "b“ "a"

14

Arrays in R

❑ While matrices are confined to two dimensions, arrays can be of any

number of dimensions.

❑ Thearray function takes a dimattribute which creates the required

number of dimension.

❑ In the below example we create an array with two elements which are

3x3 matrices each.

Create an array.

a <- array(c('green','yellow'),dim = c(3,3,2))

print(a)

15

Arrays in R

Create an array.

a <- array(c('green','yellow'),dim = c(3,3,2))

print(a)

When we execute the above code, it produces the following result −

, , 1
[,1] [,2] [,3]
[1,] "green" "yellow" "green"

[2,] "yellow" "green" "yellow"

[3,] "green" "yellow" "green“

, , 2

[,1] [,2] [,3]
[1,] "yellow" "green" "yellow"

[2,] "green" "yellow" "green"

[3,] "yellow" "green" "yellow"

16

Factors in R

❑ Factors are the r-objects which are created using a vector.

❑ It stores the vector along with the distinct values of the elements in
the vector as labels.

❑ The labels are always character irrespective of whether it is numeric
or character or Boolean etc. in the input vector.

❑ They are useful in statistical modeling.

❑ Factors are created using the factor function.

❑ The n levels functions gives the count of levels.

17

Factors in R

Create a vector
apple_colors <-
c('green','green','yellow','red','red','red','
green’)

Create a factor object.
factor_apple <- factor(apple_colors)

Print the factor.
print(factor_apple)
print(nlevels(factor_apple))

o/p

[1] green green yellow red red red green
Levels: green red yellow
applying the n levels function we can know the number
of distinct values
[1] 3 18

Data Frames in R

❑Data frames are tabular data objects.

❑Unlike a matrix in data frame each column can contain different
modes of data.

❑ The first column can benumeric while the second column can be
character and third column can be logical.

❑ It is a list of vectors of equal length.

❑Data Frames are created using the data.frame function.

19

Data Frames in R

When we execute the above code, it produces the following result −

Create the data frame.
BMI <- data.frame(
gender = c("Male", "Male","Female"),
height = c(152, 171.5, 165),
weight = c(81,93, 78),
Age = c(42,38,26)
)
print(BMI)

gender height weight Age

1 Male 152.0 81 42

2 Male 171.5 93 38

3 Female 165.0 78 26
20

Operators in R

1

Arithmetic

Operators

2
Relational
Operators

3

Logical

Operators

4

Assignment

Operators

21

Arithmetic Operators

These operators are used to carry out mathematical operations like
addition and multiplication. Here is a list of arithmetic operators available
in R.

22

Examples

>x <- 5
>y <- 16
>x+y
>[1] 21
>x-y
>[1] -11
>x*y
>[1] 80
>y/x
>[1] 3.2
>y%/%x
>[1] 3
>y%%x
>[1] 1
>y^x
>[1] 1048576

23

Relational Operators

Relational operators are used to compare between values. Here is a list

of relational operators available in R.

24

Examples

>x <- 5
>y <- 16
>x<y
>[1] TRUE
>x>y
>[1] FALSE
>x<=5
>[1] TRUE
> y>=20
>[1] FALSE
>y == 16
>[1] TRUE
>x != 5
>[1] FALSE

25

Operation on Vectors

We can use the function c() (as in concatenate) to make vectors in R.

All operations are carried out in element-wise fashion. Here is an

example.

>x <- c(2,8,3)

>y <- c(6,4,1)

>x+y

>[1] 8 12 4

>x>y

>[1] FALSE TRUE TRUE

When there is a mismatch in length (number of elements) of operand

vectors, the elements in shorter one is recycled in a cyclic manner to

match the length of the longer one.
26

R will issue a warning if the length of the longer vector is not an integral

multiple of the shorter vector.

>x <- c(2,1,8,3)

>y <- c(9,4)

>x+y # Element of y is recycled to 9,4,9,4

>[1] 11 5 17 7

>x-1 # Scalar 1 is recycled to 1,1,1,1

>[1] 1 0 7 2

>x+c(1,2,3)

>[1] 3 3 11 4

Warning message:

In x + c(1, 2, 3) :

longer object length is not a multiple of shorter object length
27

Logical Operators

Logical operators are used to carry out Boolean operations like AND, OR
etc.

28

❑ Operators & and | perform element-wise operation producing
result having length of the longer operand.

❑ But && and || examines only the first element of the operands
resulting into a single length logical vector.

❑ Zero is considered FALSE and non-zero numbers are taken as TRUE.

>x <- c(TRUE,FALSE,0,6)
>y <- c(FALSE,TRUE,FALSE,TRUE)
>!x
>[1] FALSE TRUE TRUE FALSE
>x&y
[1] FALSE FALSE FALSE TRUE
>x&&y
[1] FALSE
>x|y
[1] TRUE TRUE FALSE TRUE
>x||y
[1] TRUE 29

Assignment Operators

❑ These operators are used to assign values to variables.

❑ The operators <- and = can be used, almost interchangeably, to
assign to variable in the same environment.

❑ The << operator is used for assigning to variables in the parent
environments (more like global assignments). The rightward
assignments, although available are rarely used.

30

Examples

> x <- 5

> x

[1] 5

> x = 9

> x

[1] 9

> 10 -> x

>x [1]

10

31

Examples

>Console
An example

>x <- c(1:10)
>x[(x>8) | (x<5)]
yields 1 2 3 4 9 10
How it works
>x <-
>xc(1:10)
1 2 3 4 5 6 7 8 9 10
>x > 8
F F F F F F F F T T

32

Examples

>x < 5
T T T T F F F F FF
>x > 8 | x < 5
T T T T F F F F T T
>x[c(T,T,T,T,F,F,F,F,T,T)]
1 2 3 4 9 10

33

